1、生成式深度架构(Generative deep architectures),主要是用来描述具有高阶相关性的可观测数据或者是可见的对象的特征,主要用于模式分析或者是总和的目的,或者是描述这些数据与他们的类别之间的联合分布。(其实就是类似与生成模型)
2、判别式深度架构(Discriminative deep architectures),主要用于提供模式分类的判别能力,经常用来描述在可见数据条件下物体的后验类别的概率。(类似于判别模型)
3、混合深度架构(Hybrid deep architectures),目标是分类,但是和生成结构混合在一起了。比如以正在或者优化的方式引入生成模型的结果,或者使用判别标注来学习生成模型的参数。
尽管上述深度学习架构的分类比较复杂,其实实际中对应的模型的例子就是深度前馈网络,卷积网络和递归神经网络(Deep feed-forward networks, Convolution networks and Recurrent Networks)。