ljrj123 发表于 2018-9-25 14:19:50

NLPIR智能语义挖掘有效提高人工智能效率

  人工智能在模式识别、知识工程、机器人等领域已取得重大成就,但离真正的人类智能还相差甚远。当今网络时代,人工智能科学要在学科交叉研究中实现人工智能的发展与创新,会更加关注认知科学、脑科学、生物智能、物理学、网络科学与人工智能之间的交叉渗透,重视认知物理学的研究;自然语言是人工智能研究知识表示无法回避的直接对象,要对语言中的概念建立起能够定量表示的不确定性转换模型,发展不确定性人工智能;要利用现实生活中复杂网络的小世界模型和无标度特性,人工智能作为知识挖掘的一种新方法。  人工智能学科的出现与发展不是偶然的、孤立的,它是与整个科学体系的演化和发展进程密切相关的。人工智能是自然智能(特别是人的智能)的模拟、延伸和扩展,即研究“机器智能”,也开发“智能机器”。如果把计算机看作是宝剑,那么人工智能就是高明灵巧的剑法。  当今, 人工智能研究中一个十分活跃的分支——数据挖掘,追溯到早期是以演绎为主的专家系统的潮流而动,期望能够通过对数据的分析、清洗、整合、挖掘、模拟人的认知和思维活动,发现新的知识,这种抽象的过程,本质上也是简化归纳。  数据挖掘是从大型数据库或数据仓库中提取隐含的、未知的、非平凡的及有潜在应用价值的信息或模式,它是数据库研究中的一个很有应用价值的领域。随着人工智能技术在专家咨询、语言处理、娱乐游戏等模式识别领域的应用日益广泛。从选取专业学习、研究方向的实际出发,提出了将数据挖掘应用于辅助选取专业学习、研究方向的数据挖掘技术流程模型。  灵玖软件NLPIR大数据语义智能分析平台针对中文数据挖掘的综合需求,融合了网络精准采集、自然语言理解、文本挖掘和语义搜索的研究成果,先后历时十八年,服务了全球四十万家机构用户,是大时代语义智能分析的一大利器。  NLPIR大数据语义智能分析平台平台针对互联网内容处理的全技术链条的共享开发平台。15年专业研究与工程积累,提供应用软件及各平台下的二次开发包。提供了用于技术二次开发的基础工具集。开发平台由多个中间件组成,各个中间件API可以无缝地融合到客户的各类复杂应用系统之中。  NLPIR能够全方位多角度满足应用者对大数据文本的处理需求,包括大数据完整的技术链条:网络采集、正文提取、中英文分词、词性标注、实体抽取、词频统计、关键词提取、语义信息抽取、文本分类、情感分析、语义深度扩展、繁简编码转换、自动注音、文本聚类等。  信息时代万物数化,大数据的重要性己成行业共识,针对大数据技术和应用的创新,其发展趋势不可阻挡。如何对大数据进行充分和有效的分析和挖掘,使之转换为有价值的信息和知识,用于解决各种各样的科学和应用问题,成为大数据时代信息技术发展的重大挑战,同时也是信息技术创新的新的制高点。
页: [1]
查看完整版本: NLPIR智能语义挖掘有效提高人工智能效率